If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+3t+10=0
a = -4.9; b = 3; c = +10;
Δ = b2-4ac
Δ = 32-4·(-4.9)·10
Δ = 205
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{205}}{2*-4.9}=\frac{-3-\sqrt{205}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{205}}{2*-4.9}=\frac{-3+\sqrt{205}}{-9.8} $
| 0=-4.9t^2+3t+10 | | 11x-12=5x+42 | | 2(9r+4)+8(9r+4)=(18r+8)(9r+4) | | 3(x-1)=27-2x | | 3(b=1)=4b-1 | | 9x+33+13x-7=180 | | 1s+48+9s+19+79=180 | | 23v-36+28v+30+38=180 | | 3k+7/5=4 | | 1c-12+2c-20+54=180 | | w=3/4*15+-w | | a+5=15-4 | | 1a+20+10a+1a+18=180 | | 4p+16+1p+20+5p+12=180 | | 3x-60+x-20=2x+20 | | -8y-4y-7=19 | | 50+5t+11t-46=180 | | 8n^2+16n-89=0 | | u-1=13 | | 4r+2=17-r | | 5r+10=46-r | | 9k+2=17k-14 | | 180=y+15-2y-10 | | 2k+5=18k-27 | | 7s+38=12s+3 | | 16x+2=x+122 | | 8t-6=12t-50 | | 2(s+6)=10 | | 3x/2x-1=4/5 | | 8t-6=12t+3 | | p+7=4p–80 | | 15z-48=2z+30 |